My Photo
Name:
Location: Manuel Alberti (Pilar ) Las Toninas, Buenos Aires, Argentina

Sunday, August 20, 2006

TRABAJOS DE ULTIMO MOMENTO

ABEL SAFFIOTTI – ESTEBAN GUZMAN
ARMAS NUCLEARES
INTRODUCCION
Armas nucleares, dispositivos explosivos utilizados con fines bélicos que liberan energía nuclear a gran escala. La primera bomba atómica (o bomba A) fue probada el 16 de julio de 1945 cerca de Alamogordo (Nuevo México). Se trataba de un explosivo completamente nuevo. Hasta ese momento todos obtenían su potencia de la descomposición o combustión rápida de algún compuesto químico. Las reacciones químicas de este tipo sólo liberan la energía de los electrones más externos del átomo.
En cambio, los explosivos nucleares ponen en juego la energía contenida en el núcleo del átomo. La bomba A obtenía su potencia de la ruptura o fisión de los núcleos atómicos de varios kilos de plutonio. Una esfera del tamaño de una pelota de béisbol produjo una explosión equivalente a 20.000 toneladas de trinitrotolueno (TNT).
La bomba A se desarrolló, construyó y probó en el marco del Proyecto Manhattan. Se trataba de una extraordinaria empresa estadounidense iniciada en 1942 durante la II Guerra Mundial. En ella participaron muchos científicos eminentes, como los físicos Enrico Fermi, Richard Phillips Feynman y Edward Teller, y el químico Harold Clayton Urey. El director militar era el ingeniero Leslie Groves, comandante general del Ejército de Estados Unidos. El director científico del proyecto, localizado en el Laboratorio Nacional Los Álamos, fue el físico estadounidense Julius Robert Oppenheimer.
Terminada la guerra, la Comisión para la Energía Atómica de Estados Unidos se responsabilizó de todas las cuestiones nucleares, incluida la investigación armamentística. Se construyeron otro tipo de bombas que obtenían la energía de elementos más ligeros como el hidrógeno. En ellas la reacción que proporciona la energía es la fusión. Durante este proceso los núcleos de los isótopos de hidrógeno se combinan y forman un núcleo, más pesado, de helio (ver más adelante Armas termonucleares o de fusión). La investigación en este campo dio como resultado la producción de bombas cuya potencia oscila de una fracción de kilotón (equivalente a 1.000 toneladas de TNT) hasta muchos megatones (equivalentes a un millón de toneladas de TNT). Además se ha reducido de forma drástica el tamaño físico de las bombas, con lo que han podido desarrollarse bombas nucleares de artillería y pequeños misiles que pueden ser disparados desde lanzadores portátiles en pleno campo de batalla. Aunque en un principio se pretendía que las bombas atómicas fuesen armas estratégicas transportadas por grandes bombarderos, en la actualidad las armas nucleares pueden utilizarse para diversos fines, tanto estratégicos como tácticos. No sólo se pueden lanzar desde diferentes tipos de avión, sino en cohetes o misiles teledirigidos con cabeza nuclear desde la tierra, el aire o bajo el agua. Los cohetes grandes pueden transportar varias cabezas con diferentes objetivos. La investigación en armas nucleares prosigue en la actualidad en Los Álamos y en el Laboratorio Lawrence Livermore (California), en Estados Unidos, y en Aldermaston, en Gran Bretaña.
ARMAS DE FISIÓN NUCLEAR
En 1905 Albert Einstein publicó la teoría de la relatividad. De acuerdo con ella, la relación entre la masa y la energía viene dada por la ecuación E = mc2. Esto significa que a una masa m dada, corresponde una cantidad de energía E, equivalente a la masa multiplicada por el cuadrado de la velocidad de la luz c. Una pequeña cantidad de materia equivale a una gran cantidad de energía. Por ejemplo: un kilogramo de materia que se convirtiese por completo en energía equivaldría a la energía liberada por la explosión de 22 megatones de TNT.
En sus experimentos, los químicos alemanes Otto Hahn y Fritz Strassmann dividieron el átomo de uranio en dos partes casi iguales bombardeándolo con neutrones. Más tarde, en 1939, la física Lise Meitner y su sobrino, Otto Robert Frisch, explicaron la reacción de la fisión nuclear, lo que posibilitó la liberación de la energía atómica.
MASA CRÍTICA
Una pequeña esfera, del tamaño de una pelota de golf, de un material fisilfisil puro, como el uranio 235, no mantendría una reacción en cadena. Escaparían demasiados neutrones de la reacción en cadena a través de su superficie que es demasiado grande respecto a su volumen. Sin embargo, en el caso de una masa de uranio 235 del tamaño de una pelota de béisbol, el número de neutrones perdidos en la superficie se compensaría por el número de neutrones generados por las reacciones internas de fisión. La cantidad mínima de material fisil con una forma dada necesaria para mantener la reacción en cadena se llama masa crítica. Al aumentar el tamaño de la esfera producimos una configuración supercrítica en la que las sucesivas generaciones de fisiones aumentan con mucha rapidez, con lo que se puede llegar a una posible explosión, como resultado de la liberación en extremo rápida de una gran cantidad de energía. Por tanto, en una bomba atómica se debe ensamblar y mantener en contacto una masa de material fisil mayor que la crítica durante una millonésima de segundo. Esto permite que la reacción en cadena se propague antes de la explosión. Un contenedor, hecho de algún material pesado, rodea el material fisil y evita su explosión prematura. El contenedor también reduce el número de neutrones que se escapan.
Si se dividiese cada átomo de 0,5 kilogramos de uranio, la energía producida equivaldría a la potencia explosiva de 9,9 kilotones de TNT. En este hipotético caso la eficiencia de la reacción sería del 100%. En las primeras pruebas de la bomba A no se acercaron a ella. Además 0,5 kilos de uranio es poco para alcanzar la masa crítica.
DETOMACIÓN DE LAS BOMBAS ATÓMICAS
Se han creado varios sistemas para detonar una bomba atómica. El más simple es utilizar una pistola: se dispara un proyectil de material fisil a un objetivo del mismo material, para que ambos se fundan y formen un conjunto supercrítico. La bomba atómica que Estados Unidos hizo explotar sobre Hiroshima (Japón) el 6 de agosto de 1945 fue un arma de ese tipo. Su energía era equivalente a 20 kilotones de TNT.
Un sistema más complejo, llamado de implosión, se utiliza con bombas de forma esférica. La parte exterior de la esfera consiste en una capa de dispositivos, llamados lentes, con una forma y ensamblado especial. Están hechos de material explosivo y diseñados para concentrar la explosión en el centro de la bomba. Cada sección de este material altamente explosivo tiene un detonador que a su vez está unido por cable con las demás secciones. Una señal eléctrica hace explotar todas las partes del material explosivo de forma simultánea, lo que provoca una onda explosiva que converge en el núcleo de la bomba. En éste hay una esfera de material fisil que se comprime por la poderosa presión ejercida hacia el interior, es decir, la implosión. Esto aumenta la densidad del material y produce un conjunto supercrítico. La bomba que se probó en Alamogordo y la que Estados Unidos lanzó sobre Nagasaki (Japón) el 9 de agosto de 1945 fueron de este tipo. Cada una de ellas equivalía a 20 kilotones de TNT.
Con independencia del método utilizado para alcanzar una configuración supercrítica, la reacción en cadena se produce durante una millonésima de segundo y libera grandes cantidades de energía térmica. La liberación tan rápida de una cantidad tan grande de energía en un volumen relativamente pequeño, provoca que la temperatura alcance decenas de millones de grados. La posterior expansión y vaporización del material de la bomba provoca una potente explosión.
Separación de los isótopos de Uranio
El isótopo fisil uranio 235 representa sólo el 0,7% del uranio natural. El resto se compone del más pesado uranio 238. Los métodos químicos no son suficientes para separar el uranio 235 del uranio normal, porque ambos isótopos del uranio son idénticos en su forma química. Se han creado varias técnicas para separarlos, pero todas ellas se basan en la pequeña diferencia de peso que hay entre los dos tipos de átomos de uranio.
Durante la II Guerra Mundial se construyó en Oak Ridge (Tennessee) una inmensa planta de difusión gaseosa. Esta planta se amplió después de la guerra y se construyeron dos similares cerca de Paducah (Kentucky) y de Portsmouth (Ohio). El material de base para este tipo de planta es el gas hexafluoruro de uranio, que es muy corrosivo. Este gas se bombea sobre barreras que tienen millones de pequeños agujeros, a través de los cuales las moléculas más ligeras (que contienen átomos de uranio 235) se difunden a una velocidad mayor que las moléculas más pesadas que contienen átomos de uranio 238 (véase Difusión). Una vez que el gas se ha difundido a través de miles de estas barreras (también llamadas fases), se hace muy rico en el isótopo más ligero del uranio. El producto final es uranio apto para fabricar bombas con más de un 90% de uranio 235.
ARMAS TERMONUCLEARES O DE FUSIÓN
Antes de que se fabricara la primera bomba atómica los científicos ya se dieron cuenta de que en teoría era posible una reacción nuclear diferente de la fisión, como fuente de energía nuclear. En vez de aprovechar la energía que se produce en una reacción en cadena en el material fisil, las armas nucleares podrían utilizar la energía liberada en la fusión de los elementos más ligeros. Esta reacción es la opuesta a la fisión, ya que consiste en la fusión de dos núcleos de isótopos de algún átomo ligero como el hidrógeno. Por esta razón, las bombas de fusión nuclear se llaman muchas veces bombas de hidrógeno o bombas H. De los tres isótopos de hidrógeno, los dos más pesados, deuterio y tritio, son los que se combinan con más facilidad para formar helio. Aunque la liberación de energía por reacción nuclear durante la fusión es menor que en la fisión, la cantidad de átomos en 0,5 kilogramos de un material ligero es mucho mayor. La energía que liberan 0,5 kilogramos de un isótopo de hidrógeno es equivalente a 29 kilotones de TNT, es decir, tres veces más que la misma cantidad de uranio. Pero esta estimación presupone la fusión de todos los átomos de hidrógeno. La fusión se produce sólo a temperaturas de varios millones de grados y su velocidad sufre un incremento espectacular con la temperatura. Estas reacciones se llaman, por tanto, reacciones termonucleares (inducidas por calor). Hablando en términos estrictos, la palabra “termonuclear” denota que los núcleos tienen un rango (o distribución) de energías característico para cada temperatura. Este hecho es importante, al posibilitar las reacciones de fusión rápidas mediante un incremento de la temperatura.
El desarrollo de las bombas de hidrógeno era imposible antes de que se perfeccionaran las bombas A, dado que sólo éstas podían proporcionar la tremenda cantidad de calor necesaria para iniciar la fusión de los átomos de hidrógeno. Los científicos atómicos consideraban las bombas A como el detonador del dispositivo termonuclear proyectado.
Pruebas termonucleares
Después de algunas pruebas experimentales llevadas a cabo en la primavera de 1951 en la zona de pruebas de Estados Unidos en las Islas Marshall, el 1 de noviembre de 1952 se realizó con éxito la primera prueba a gran escala de un dispositivo de fusión. Esta bomba, llamada Mike, produjo una explosión de la potencia de varios millones de toneladas de TNT (es decir, varios megatones). La Unión Soviética detonó una bomba termonuclear de más de un megatón en agosto de 1953, mucho antes de lo que se esperaba. El 1 de marzo de 1954, Estados Unidos hizo explotar una bomba de fusión de una potencia de 15 megatones. Provocó una bola de fuego de más de 4,8 kilómetros de diámetro y una enorme nube en forma de hongo, que se elevó con mucha rapidez hasta la estratosfera.
La explosión de marzo de 1954 dio lugar a que se reconociera mundialmente la existencia de la lluvia radiactiva. La lluvia de desechos radiactivos procedentes del hongo atómico reveló también muchas cosas sobre la naturaleza de una bomba termonuclear. Si la bomba hubiese sido una bomba A, como detonador de un núcleo de isótopos de hidrógeno, la única radiactividad persistente hubiera sido la de los restos de la fisión del detonador y la inducida por los neutrones en el agua de mar y en los corales. Pero algunos residuos radiactivos cayeron en un barco japonés llamado el Dragón afortunado, un atunero que se encontraba a 160 kilómetros del lugar de la explosión. El polvo radiactivo fue analizado con posterioridad por científicos japoneses y sus resultados probaban que la bomba cuyos residuos se habían recogido sobre el Dragón afortunado era algo más que una bomba H.
BOMBAS DE FISIÓN-FUSIÓN-FISIÓN
La bomba termonuclear de 1954 fue un arma de tres fases. La primera fase era una bomba A que actuaba como detonador. La segunda era una bomba H, resultante de la fusión de deuterio y tritio en el interior. Al detonar se formaban átomos de helio y neutrones de alta energía. La tercera fase se iniciaba con el impacto de estos neutrones en la cubierta exterior de la bomba, que estaba hecha de uranio natural o uranio 238. En este punto no se producía reacción en cadena, pero los neutrones de la fusión tenían suficiente energía como para producir la fisión del núcleo de uranio, lo que se sumaba a la potencia explosiva total y a la radiactividad de los residuos de la bomba.
Efectos de la onda expansiva
Al igual que con las explosiones de armas convencionales, la mayor parte del daño causado por una explosión nuclear en los edificios y en otras estructuras proviene, de modo directo o indirecto, de los efectos de la onda expansiva. La rápida expansión de los materiales de la bomba produce un impulso de altas presiones, también llamado onda de choque, que se mueve desde la bomba en explosión hacia fuera con mucha rapidez. En el aire, esta onda de choque se llama onda expansiva, porque es equivalente a ésta y la acompañan vientos de una fuerza mucho mayor que los de un huracán. Los daños son producidos tanto por el gran exceso (o sobrepresión) de aire que antecede a la onda expansiva como por los vientos tan fuertes que siguen soplando después del paso de ésta. El alcance de los daños en tierra como consecuencia de la explosión depende de su equivalente en TNT, de la altitud a la que explotó la bomba (altura de la explosión) y de la distancia de la estructura hasta el punto cero (es decir, el punto situado justo bajo la explosión de la bomba en vertical). En el caso de las bombas A que explotaron sobre Japón, la altura de la explosión fue de unos 550 metros, ya que se calculó que esta altura produciría un área de destrucción máxima. Si el equivalente en TNT hubiera sido mayor, se habría escogido también una mayor altitud de explosión.
Si se elige una altura de explosión que maximice el área afectada, una bomba de 10 kilotones provocará daños graves en las casas con estructura de madera (muy comunes en Estados Unidos) a una distancia de más de 1,6 kilómetros del punto cero y provocará daños moderados hasta los 2,4 kilómetros (una casa con graves daños ya no se puede reparar). El radio de devastación se incrementa con la potencia de la bomba, de modo proporcional a su raíz cúbica. Por tanto, si una bomba de 10 megatones (1.000 veces más poderosa que una de 10 kilotones) explota a una altura óptima, las distancias se incrementarán por un factor diez: 16 kilómetros de radio para los daños graves y 24 kilómetros para los daños moderados.
Radiactividad
Aparte de la onda térmica y expansiva, las bombas nucleares tienen un efecto característico. Liberan radiación penetrante que es diferente por completo de la radiación térmica, es decir, del calor (véase Radiactividad). Cuando es absorbida por el cuerpo, la radiación nuclear puede provocar graves daños. Si la explosión ocurre a gran altitud, el radio en que se producen estos daños es menor que el de los daños por incendios y por la onda expansiva o que el de las quemaduras por radiación térmica. Sin embargo, en Japón, debido a la radiación murieron más tarde muchas personas que estaban protegidas de la onda expansiva y de las quemaduras.
Existen dos categorías de radiación nuclear provocadas por una explosión: la radiación instantánea y la radiación residual. La radiación instantánea se compone de un fogonazo de neutrones y rayos gamma que se propagan por una zona de varios kilómetros cuadrados. Los efectos de los rayos gamma son idénticos que los de los rayos X. Tanto los neutrones como los rayos gamma pueden atravesar la materia sólida, por lo que para protegerse hacen falta materiales de gran espesor.
La radiación residual conocida como lluvia radiactiva puede ser un peligro en grandes zonas que no sufran ninguno de los otros efectos de la explosión. Las bombas que obtienen su energía de la fisión del uranio 238 o del plutonio 239 producen dos núcleos radiactivos por cada núcleo fisil que se divide. Estos productos de la fisión producen una radiactividad permanente en los restos de la bomba, ya que la vida media de estos átomos se puede medir por días, meses o años.
Se conocen dos tipos de lluvia radiactiva, la inicial y la tardía. Si la explosión nuclear se produce cerca de la superficie, la tierra o el agua se levantan formando una nube en forma de hongo. Además el agua y la tierra se contaminan al mezclarse con los restos de la bomba. El material contaminado empieza a depositarse a los pocos minutos y puede seguir haciéndolo durante 24 horas, cubriendo una zona de varios miles de kilómetros cuadrados, en la dirección en que el viento lo lleve. Se llama lluvia radiactiva inicial y supone un peligro inmediato para los seres humanos. Si una bomba nuclear explota a gran altitud, los residuos radiactivos se elevan a gran altura junto con la nube en forma de hongo y cubren una zona aún más extensa.
La experiencia de la lluvia radiactiva en el hombre ha sido mínima. El caso más importante es el de la exposición accidental de isleños y pescadores en la explosión de 15 megatones del 1 de marzo de 1954. La lluvia radiactiva ha afectado a los seres humanos en diversas ocasiones: las secuelas de los experimentos nucleares estadounidenses en Bikini (Micronesia, 1946) y de las bombas nucleares de Hiroshima y Nagasaki en 1945 todavía se manifiestan en la población que sufrió sus efectos y en sus descendientes. El 26 de abril de 1986 estalló el reactor de la central nuclear ucraniana de Chernóbil, y emitió radiación durante 10 días. En el plazo de cinco años el cáncer y la leucemia aumentaron en la zona un 50%. No es posible calcular o predecir las generaciones futuras que todavía se verán sometidas a las consecuencias de los accidentes o explosiones nucleares. Las propiedades de la radiactividad y las inmensas zonas que pueden contaminarse convierten a la lluvia radiactiva en lo que, potencialmente, pudiera ser el efecto más letal de las armas nucleares.
Efectos climáticos
Aparte de los daños por la onda expansiva y por la radiación, una guerra nuclear a gran escala entre naciones tendría casi con certeza un efecto catastrófico sobre el clima mundial. Esta posibilidad, que se planteó en un artículo publicado por un grupo internacional de científicos en diciembre de 1983, se conoce como la teoría del “invierno nuclear”. Según estos científicos, la explosión de menos de la mitad del total de las cabezas nucleares de Estados Unidos y Rusia enviaría a la atmósfera enormes cantidades de polvo y humo. Esta cantidad sería suficiente para ocultar al Sol durante varios meses, sobre todo en el hemisferio norte, lo que acabaría con las plantas y provocaría un clima de temperaturas bajo cero hasta que se dispersase ese polvo. La capa de ozono también se vería afectada, lo que agravaría los daños como consecuencia de la radiación ultravioleta solar. Si esta situación se prolongase, significaría el fin de la humanidad. Desde entonces, la teoría del invierno nuclear ha estado permanentemente envuelta en polémica. En 1985 el Departamento de Defensa de Estados Unidos reconoció su validez, pero afirmó que no afectaría a la política de defensa.
Bombas H limpias
Por término medio, un 50% de la potencia de una bomba H proviene de las reacciones termonucleares y otro 50% de la fisión de la bomba A, que actúa como detonante, así como de la fisión de la capa externa de uranio. Se define la bomba H limpia como aquélla en la que menos del 50% de su potencia proviene de la fisión. Dado que la fusión no produce sustancias radiactivas de forma directa, los residuos de una bomba limpia son menores que los de una bomba H media normal con la misma potencia. Si se construyese una bomba H, sin cubierta de uranio pero con un detonador de fisión, sería relativamente “limpia”. Quizá tan sólo un 5% de la potencia explosiva provendría de la fisión; por tanto, la bomba sería limpia en un 95%. Esta bomba de fusión mejorada, también llamada bomba de neutrones, ha sido probada por Estados Unidos y otras potencias nucleares. Aunque la fisión no libera residuos radiactivos que sean duraderos, sí libera una gran cantidad de los neutrones creados en la reacción termonuclear. Estos neutrones inducen la radiactividad en otros materiales, sobre todo en la tierra y el agua, en un radio relativamente pequeño alrededor de la explosión. Por eso, la bomba de neutrones se considera un arma táctica, porque puede producir daños graves en el campo de batalla. Destruye los carros blindados y otros vehículos similares y provoca la muerte o deja heridas de escasa gravedad a las personas expuestas, pero no produce los residuos radiactivos que ponen en peligro a seres humanos o a las casas a kilómetros de distancia.
GUERRA QUÍMICA Y BIOLÓGICA

INTRODUCCIÓN
Guerra química y biológica, método de guerra en el que se utilizan agentes biológicos o químicos tóxicos o incapacitantes para ampliar los objetivos de los combatientes. Hasta el siglo XX ese tipo de guerra estuvo limitada sobre todo a los incendios, los pozos de agua envenenados, la distribución de artículos infectados de viruela y el uso de humo para diezmar o confundir al enemigo.
AGENTES QUÍMICOS
Gases como el gas lacrimógeno, el gas cloro y fosgeno (irritantes de los pulmones) y el gas mostaza (que produce graves quemaduras) se utilizaron por primera vez en la I Guerra Mundial para romper el prolongado estancamiento de la guerra de trincheras; también se intentó utilizar el lanzallamas, pero en principio resultaron ineficaces por su corto alcance. Los adelantos técnicos y el desarrollo del napalm (compuesto de ácidos de nafta y palmíticos), una espesa gasolina que se adhiere a las superficies, condujo a un uso más amplio de armas flamígeras durante la II Guerra Mundial.
Al final de la I Guerra Mundial la mayoría de las potencias europeas habían incorporado la guerra de gases en algún departamento de sus ejércitos, y Alemania había desarrollado en el periodo de entreguerras gases nerviosos como el sarín, que puede causar muerte o parálisis aplicado en pequeñas cantidades. A pesar de su disponibilidad, sólo Japón utilizó gases —en China— al producirse la globalización de la contienda. Después de la II Guerra Mundial el conocimiento de la producción de gases se hizo extensivo.
Desde la II Guerra Mundial se han utilizado gases como el lacrimógeno en guerras limitadas, por ejemplo en la guerra de Vietnam; también es empleado por la policía para reprimir motines. El uso de agentes más mortíferos, como el gas mostaza o nervioso, ha sido condenado por la mayoría de los países, aunque semejantes armas permanecen en arsenales y se cuenta con evidencias de que fueron utilizadas por Irak durante la Guerra Irano-iraquí, en la década de 1980, así como contra los kurdos del norte de su territorio.
Varios compuestos químicos que alteran el metabolismo de las plantas y causan defoliación, como el agente naranja, se han utilizado en la guerra moderna en la jungla para reducir la cobertura del enemigo o privar a la población civil de las cosechas necesarias para su alimento. Tales agentes químicos, que se suelen lanzar desde el aire, pueden contaminar también el agua y los peces; su efecto a largo plazo sobre todo el ecosistema hace que resulten devastadores. Véase también Medio ambiente: Problemas medioambientales.
GUERRA BIOLÓGICA
Varios países han desarrollado trabajos de diferente categoría sobre agentes biológicos para que fueran utilizados en la guerra. Seleccionados o adaptados a partir de microbios patógenos causantes de diversas enfermedades que atacan al hombre, a los animales domésticos o a las cosechas de alimentos vitales, tales agentes comprenden bacterias, hongos y virus o diversas toxinas. Los microbios patógenos que causan el botulismo, la peste, la fiebre aftosa y el añublo del trigo se cuentan entre los muchos que pueden ser utilizados contra los ejércitos enemigos o las actividades económicas que les sirven de sustento. La ingeniería genética también ofrece la posibilidad de desarrollar nuevos virus contra los que se carece de medios para establecer una defensa previa.
La guerra biológica a larga escala se ha mantenido en un estado teórico, si bien en la década de 1980 se supo que Japón había utilizado agentes biológicos en China en las décadas de 1930 y 1940. Al comienzo de la década de 1980 surgieron controvertidas acusaciones de que la Unión Soviética en Afganistán, y Vietnam en Laos y Kampuchea (hoy Camboya) estaban usando toxinas fungicidas —en una forma llamada lluvia amarilla— como armas biológicas.
DISEMINACIÓN Y PROTECCIÓN
Los métodos más primitivos de diseminar agentes químicos consistieron en su simple liberación de contenedores presurizados, tal como hicieron los alemanes durante la II Guerra Mundial. Esto obligaba a que su utilización dependiera del viento, si bien éste podía cambiar su dirección con frecuencia y lanzar los agentes químicos sobre las tropas propias o aliadas. Por tanto, los ejércitos buscaron formas mejores de proyectar estas armas, como morteros, artillería, cohetes, bombas aéreas y aspersores aéreos. Los agentes biológicos también pueden diseminarse mediante insectos o animales liberados en el área enemiga.
Sean cuales sean los medios de diseminación, es imprescindible proteger las fuerzas y poblaciones amigas. La mayoría de los países están desarrollando programas para la detección de agentes letales y su descontaminación; también se trabaja en el desarrollo de armas ofensivas cuyo almacenamiento y uso sea menos peligroso.
Las armas biológicas o químicas utilizadas en la guerra convencional o nuclear pueden desempeñar también un destacado papel en las futuras guerras de guerrillas o en acciones de sabotaje. En tales situaciones se acude a materiales tóxicos inertes —polvos, por ejemplo, que se activan al entrar en contacto con superficies húmedas como los pulmones— lanzados de forma subrepticia al aire de la ciudad desde vehículos en movimiento o desde buques en alta mar. Otra posible táctica es la de introducir toxinas solubles en las redes urbanas de suministro de agua.
Los agentes químicos y biológicos pueden ser utilizados en guerras limitadas. El hecho de que la producción de agentes químicos letales no exija una infraestructura industrial muy refinada los convierte en medios bélicos asequibles a los países del Tercer Mundo. El uso de armas químicas por Irak y la capacidad de guerra química por parte de Libia en 1988, incrementan el peligro que semejantes armas pueden originar. Es también materia de alta preocupación que ese tipo de armas caiga en poder de grupos terroristas, habida cuenta de que cantidades mínimas de toxinas disueltas en agua o aire pueden dar lugar a una catástrofe de muy amplias dimensiones, como ocurrió en la década de 1990 en el metro de Tokyo.

DREE DEBORA
MARCOS BULACIOS

Realizaron sus trabajos en forma impresa por lo que no se los puede publicar

Alejandro Gomez me entrego un CD virgen.!!!!!!!!!

***********************************************************

0 Comments:

Post a Comment

<< Home